

A model-based approach for the evaluation of noise emissions in external gear pumps

Sangbeom Woo

6/4/2019

- Introduction
- Modeling Details & Experimental Setup
- Numerical & Experimental Results
- Model Potentials

Introduction

- Noise is a key issue for current hydraulic systems and limiting factor to the spread of hydraulics into new fields
- Displacement machines are the primary sources of noise in fluid power systems
- Reference: External Gear Pumps

- Successful design solutions involving gears focusing on **flow oscillations**:
 - Negrini (1996) Dual-flank gears
 - Fiebig (2010) Compression filter volumes
 - Mucchi (2010) Split gear solution
 - Lätzel (2012) Cycloidal gear profiles
 - Morselli (2015) Helical asymmetric gears

Maha Fluid Power

Asymmetric gears

Helical gears

Introduction

- All sources of noise and how noise propagates through the system are not well understood
- Noise generation in external gear pumps involves **three domains**

Fluid-Borne Noise (FBN)	ر Structure-Borne Noise (SBN)	ال) Air-Borne Noise (ABN)			
Pressure fluctuations in the fluid	Forces applied to the structure cause vibrations	Vibrations transmitted through the air from the structure to the field			

Aims of the research:

- Develop the noise prediction model which <u>considers all possible noise sources</u> and interaction between three domains
- Identify the effect of the pump mounting conditions on the emitted noise in the numerical modeling works

Maha Fluid Power

Maha Fluid Power

PURDUE

UNIVERSITY

- Numerical Modal Analysis
 - Modes in the audible frequency (20 Hz ~ 20 kHz) are considered

• Modal superposition technique is used to determine the structural forced response

$$\{w\} = \sum_{k=1}^{M} q_k \Phi_k = [\Phi] \cdot \{q\}$$

$$w : \text{Displacement (Forced response of structure)}$$

$$q_k: \text{Modal participation factors}$$

$$\Phi_k: \text{Modal vectors (mode shapes)}$$

UF

Fluid Power

Maha

Maha Fuid Power Purdue

Boundary Element Surface Mesh

Field Point Mesh & Acoustic Environments

- Generated on the exterior surface of FEM Mesh
- Uniformly distributed coarsened
 mesh for efficient calculation

- Visualization mesh in acoustic domain
- Can be regarded as microphone arrays
- Mimic the acoustic environments of semi-anechoic chamber

ISO

9614-1

Discrete Points)

Determination of Sound Power

Levels of Noise Sources using Sound

Intensity. Part 1: Measurement at

(Acoustics-

The inlet temperature was kept constant

(Steady-state conditions)

Sound intensity was measured at discrete points using the robot arm

Maha Fluid Power

RESEARCH CENTER

PURDUE

Mounting Conditions in Numerical Model

Standalone Pump

Pump with structure

Modal Analysis Results

Vlaha	F	U	id	P	Q	W	'e	r	P	J	J	R	Γ)	U	IJ	E
ESEARCH CENTER	-		Ю	Б	U,		B	L	U	N	I V	E	R	S	I	T	Y

(Reference of normalization: 1st numerical modal frequency of standalone pump

- Including structures lower the first resonant frequency
- Some mode shapes contain the axial motion of the plate

1	7
Т	Z

Mode	Standalone	with structure						
widue	Normalized Frequency							
1	1.00	0.58						
2	1.02	0.91						
3	1.95	1.00						
4	2.75	1.07						
5	3.71	1.34						
6	3.89	1.37						
7	5.18	1.74						
8	5.43	1.93						
9	5.60	2.27						
10	5.72	2.30						
11	5.85	2.34						
12	6.27	2.37						
13	6.36	2.60						
14	6.60	0.72						
15	6.94	3.02						
16	7.04	3.16						
17		3.34						
18		3.47						
19		3.47						
20		3.67						

(Reference of normalization: Sound power of the experimental noise floor)

Operating conditions	Standalone pump	1	Measurement	Pump with structure					
1500 rpm, 100 bar	40.0 dB (-0.5 dB)		40.5 dB	40.2 dB (-0.3 dB)					
1500 rpm, 200 bar	45.1 dB (-1.8 dB)		46.9 dB	44.8 dB (-2.1 dB)					
2000 rpm, 100 bar	42.6 dB (+0.1 dB)		42.5 dB	41.9 dB <mark>(-0.6 dB)</mark>					
2000 rpm, 200 bar	48.1 dB (+3.4 dB)		44.7 dB	46.7 dB (+2.0 dB)					

• the range of discrepancy becomes smaller ($[-1.8^{3.4} dB] \rightarrow [-2.1^{2.0} dB]$)

Standalone pump Pump with structure Measurement [dB] [dB] 20 20 1.5 1.5 1.5 -19 1 15 18 18 0.5 0.5 0.5 1500 rpm, 16 z [m] <u>ا</u> م z [m] 10 100 bar 17 14 -0.5 -0.5 -0.5 12 16 5 -1 -1 10 15 0 0 -1.5 -1.5 -1.5 0 x⁰[m] ^{0.5} 1 1.5 y [m] y [m] -1.5 -1.5 $^{-1}$ $^{-0.5}$ x^{0} m $^{0.5}$ 1 y [m] -1.5 -0.5 -1 -0.5×0 m $^{-0.5} 1$ -1 1.5 1.5 23 22 1.5 -1.5 ¬ 22 1.5 22 20 1 21 1 20 18 2000 rpm, 0.5 0.5 0.5 20 16 18 z [m] [<u></u>] 0 z [m] 14 100 bar 19 12 -0.5 -0.5 -0.5 18 14 10 -1 -1 -1 17 -1 12 8 0 -1.5 -1.5 -1.5 y [m] -1.5 y [m] -1.5 -0.5 x⁰[m] 0.5 y [m] -1.5 -0.5 x⁰[m] ^{0.5} -0.5 x⁰[m] ^{0.5} -1 1.5 -1 1.5 -1 1 1 1 1.5

• By including structures, the acoustic model starts to capture the noisy areas

PURDUE

Fluid Power

Maha

RESEARCH CENTER

Standalone pump Pump with structure Measurement [dB] [dB] 25 1.5 1.5 28 24 1 26 20 22 1500 rpm, 0.5 0.5 15 <u>E</u> 0 z [IJ 20 200 bar 22 18 -0.5 -0.5 20 10 16 -1 -1 18 14 0 -1.5 -1.5 x⁰[m] ^{0.5} 1 1.5 y [m] -1.5 -1 -0.5 x⁰[m] 0.5 1 1.5 y [m] -1.5 y [m] -0.5 $^{-1}$ $^{-0.5}$ x⁰m^{0.5} 1 -1.5 -1 1.5 28 25 28 1.5 1.5 1.5 26 26 24 1 24 1 24 22 2000 rpm, 0.5 0.5 23 0.5 20 z [m] Ξ z [m] 22 200 bar 22 Ν 18 20 -0.5 -0.5 -0.5 16 21 18 -1 14 -1 -1 -1 20 0 0 12 16 -1.5 -1.5 -1.5 -1.5 y [m] y [m] -1.5 y [m] -0.5 x⁰[m] ^{0.5} -1.5 -0.5 x⁰[m] ^{0.5} -0.5 x⁰[m] ^{0.5} -1 1.5 -1 1 1.5 -1 1.5 1 1

• Noisy areas remain almost the same at the same shaft speed

PURDUE

Fluid Power

Maha

RESEARCH CENTER

Vibration of 'standalone pump'

• Forced response of the structure (Displacement)

• All the motions appear to be the superposition of 1,2, and 3 mode shapes

- No axial motions are observed at all frequencies up to 5 kHz
- Low noise emission in axial direction

Limitations of the standalone pump model

Fluid Power

Maha

Vibration of 'pump with structures'

Maha Fuid Power Purdue RESEARCH CENTER UNIVERSIT

- Vibrations of the pump are similar to those of the standalone pump
- Vibrations of plate in axial direction also can be observed
- It can contribute to noise emissions in axial directions

Vibration Measurement

Maha Fluid Power

- Accelerometers were mounted to pump and plate during the pump operation
- Acceleration signals were synchronized using cross-correlation

PURDUE

Vibration Comparisons

Maha Fluid Power Purdue RESEARCH CENTER UNIVERSITY

< Bending Motion >

- Vibration prediction using modal superposition technique is valid
- Vibration of the plate can be observed in the measurement

Model Potentials

Sources: Woo, et al, BATH/ASME FPMC 2017

PURDIF

- Number of teeth: 14
- Pressure angle: 20 °
- Center distance: 35 mm

Dua	l-fla	nk	gear
			0

Maha Fluid Power

RESEARCH CENTER

Overall SWL [dB]	Dual-flank		Single- flank	Difference		
1000 rpm, 50 bar	71.9 dB	<	74.3 dB	2.4 dB		
1000 rpm, 100 bar	73.5 dB	<	75.4 dB	1.9 dB		

Acoustic model confirmed lower noise level of the dual-flank design

Model Potentials

Maha Fluid Power Purdue RESEARCH CENTER UNIVERSITY

• Gear & Groove Design Parameters

• Parameterization of acoustic model for optimization

• Objective function: Sound Power

Thank you. Questions?